13379 measured reflections

 $R_{\rm int} = 0.038$

2910 independent reflections

1710 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Cyclohexanaminium trichloroacetate

Durre Shahwar,^a M. Nawaz Tahir,^b* Naeem Ahmad,^a Muhammad Akmal Khan^a and Afifa Saeed^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 9 May 2009; accepted 10 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.066; wR factor = 0.215; data-to-parameter ratio = 20.9.

In the crystal of the title compound, $C_6H_{14}N^+ \cdot C_2Cl_3O_2^-$, centrosymmetric assemblies of two cyclohexanaminium cations and two trichloroacetate ions are linked by N-H···O hydrogen bonds, thereby forming $R_4^4(12)$ ring motifs. Further N-H···O interactions link the tetramers into chains propagating along the *a* axis.

Related literature

For related structures, see: Shahwar et al. (2009); Wang et al. (2005); Jones & Ahrens (1998). For reference structural data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data $C_6H_{14}N^+ \cdot C_2Cl_3O_2^ M_r = 262.55$ Monoclinic, $P2_1/c$ a = 6.7217 (4) Å b = 21.2482 (15) Å c = 10.6908 (6) Å $\beta = 126.590 \ (3)^{\circ}$

V = 1225.98 (14) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.72 \text{ mm}^{-1}$ T = 296 K $0.25 \times 0.18 \times 0.12 \ \text{mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.853, T_{\rm max} = 0.919$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	H atoms treated by a mixture of
$wR(F^2) = 0.215$	independent and constrained
S = 1.05	refinement
2910 reflections	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
139 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1-H1A\cdotsO1^{i}$ $N1-H1B\cdotsO2^{ii}$ $N1-H1C\cdotsO1^{iii}$	0.85 (6) 0.82 (5) 1.02 (4)	1.96 (6) 1.96 (5) 1.83 (4)	2.788 (6) 2.770 (5) 2.837 (4)	167 (4) 168 (4) 169 (4)
Symmetry codes: $-r + 1$ $y - \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$	(i) <i>x</i> − 1, −	$y + \frac{1}{2}, z - \frac{1}{2};$	(ii) $x, -y +$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

NA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042-120599-PS2-156).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2970).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Jones, P. G. & Ahrens, B. (1998). Eur. J. Org. Chem. 8, 1687-1688.

- Shahwar, D., Tahir, M. N., Ahmad, N., Khan, M. A. & Yasmeen, A. (2009). Acta Cryst. E65, 01312.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, J.-P., Cheng, X.-X., Wang, J.-G. & Chen, Q.-H. (2005). Acta Cryst. E61, o4006-o4007.

supplementary materials

Acta Cryst. (2009). E65, o1313 [doi:10.1107/S1600536809017504]

Cyclohexanaminium trichloroacetate

D. Shahwar, M. N. Tahir, N. Ahmad, M. A. Khan and A. Saeed

Comment

In continuation of synthesizing various organic ammonium salts (Shahwar *et al.*, 2009), the title compound (I), (Fig. 1) is being reported. The crystal structures of (II) Cyclohexylammonium dichloroacetate (Wang *et al.*, 2005) and (III) Cyclohexylammonium cyclohexylammonium chloride (Jones & Ahrens, 1998) have been reported.

In (I), the bond distance and bond angles are within normal ranges (Allen *et al.*, 1987). In the title compound, two cyclohexanaminium ions and two trichloroacetate ions are interlinked through intermolecular H-bonding of N—H···O type (Table 1) forming ring motifs $R_4^4(12)$ (Bernstein *et al.*, 1995) (Fig. 2). The ring motifs are further connected through the same along the *a* axis resulting in one-dimensional polymeric chains. The cyclohexanaminium ions are in chair confirmations with N-atoms at a distance of 0.628 (9)Å from the central plane.

Experimental

A solution of trichloroacetic acid (1.635 g, 0.01 mol) in 20 ml of dichloromethane was prepared. To this solution cyclohexyl amine (1.14 ml, 0.01 mol) was added dropwise and stirred for 30 min. The precipitate were filtered out and recrystallized in hot chloroform to yield colourless rods of (I).

Refinement

The coordinates of H-atoms attached to N1 and C1 were refined. The other H atoms were positioned geometrically (C—H = 0.97 Å) and refined as riding. The constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ was applied for all H atoms.

Figures

Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius.

Fig. 2. The partial packing in (I) showing intermolecular H-bonding between NH₃ and trichloroacetate ions and the resulting ring motif.

Cyclohexanaminium trichloroacetate

Crystal data

C₆H₁₄N⁺·C₂Cl₃O₂⁻ $M_r = 262.55$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.7217 (4) Å b = 21.2482 (15) Å c = 10.6908 (6) Å $\beta = 126.590$ (3)° V = 1225.98 (14) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	2910 independent reflections
Radiation source: fine-focus sealed tube	1710 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
Detector resolution: 7.50 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}$
T = 296 K	$\theta_{\min} = 2.6^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	<i>k</i> = −27→26
$T_{\min} = 0.853, T_{\max} = 0.919$	$l = -12 \rightarrow 14$
13379 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.215$	$w = 1/[\sigma^2(F_o^2) + (0.1089P)^2 + 0.5776P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2910 reflections	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
139 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $F_{000} = 544$ $D_{\rm x} = 1.422 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2910 reflections $\theta = 2.6-27.9^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 296 KRod, colorless

 $0.25\times0.18\times0.12~mm$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

		1 1	1 1	1	
	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
N1	0.2904 (5)	0.05714 (15)	0.0547 (4)	0.0480 (10)	
C1	0.4574 (6)	0.08854 (16)	0.2093 (4)	0.0463 (10)	
C2	0.7215 (6)	0.06696 (19)	0.2878 (5)	0.0568 (11)	
C3	0.8922 (7)	0.0967 (2)	0.4465 (5)	0.0731 (15)	
C4	0.8100 (8)	0.0827 (3)	0.5472 (6)	0.0816 (18)	
C5	0.5457 (8)	0.1032 (2)	0.4704 (5)	0.0764 (17)	
C6	0.3726 (7)	0.0733 (2)	0.3100 (5)	0.0626 (15)	
Cl1	0.9294 (2)	0.30601 (6)	0.38465 (15)	0.0791 (4)	
Cl2	0.7598 (3)	0.28803 (6)	0.57059 (16)	0.1029 (6)	
C13	0.4167 (2)	0.28226 (6)	0.23280 (17)	0.0950 (5)	
01	0.7893 (5)	0.42783 (12)	0.4227 (4)	0.0711 (9)	
O2	0.4297 (5)	0.40429 (14)	0.3696 (3)	0.0680 (10)	
C7	0.6272 (5)	0.39152 (15)	0.3948 (3)	0.0406 (9)	
C8	0.6778 (7)	0.32022 (15)	0.3937 (4)	0.0488 (10)	
H1	0.432 (7)	0.1331 (19)	0.186 (4)	0.0553*	
H1A	0.141 (8)	0.0678 (19)	0.011 (5)	0.0575*	
H1B	0.333 (7)	0.0632 (19)	-0.002 (5)	0.0575*	
H1C	0.285 (7)	0.010 (2)	0.071 (4)	0.0575*	
H2A	0.72989	0.02151	0.29833	0.0680*	
H2B	0.77440	0.07841	0.22401	0.0680*	
H3A	1.05899	0.08085	0.49682	0.0877*	
H3B	0.89524	0.14188	0.43499	0.0877*	
H4A	0.91813	0.10433	0.64607	0.0973*	
H4B	0.82413	0.03787	0.56795	0.0973*	
H5A	0.53487	0.14865	0.46040	0.0919*	
H5B	0.49516	0.09095	0.53505	0.0919*	
H6A	0.20568	0.08903	0.25991	0.0753*	
H6B	0.37023	0.02808	0.32080	0.0753*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0401 (14)	0.0439 (17)	0.0601 (19)	0.0011 (12)	0.0300 (14)	0.0040 (13)

supplementary materials

C1	0.0436 (16)	0.0341 (17)	0.057 (2)	0.0007 (13)	0.0278 (16)	0.0035 (14)
C2	0.0426 (17)	0.063 (2)	0.066 (2)	0.0015 (16)	0.0331 (17)	0.0043 (18)
C3	0.0463 (19)	0.084 (3)	0.072 (3)	-0.0074 (19)	0.026 (2)	-0.002 (2)
C4	0.066 (2)	0.093 (4)	0.064 (3)	-0.002 (2)	0.027 (2)	-0.007 (2)
C5	0.079 (3)	0.088 (3)	0.068 (3)	0.003 (2)	0.047 (2)	-0.010 (2)
C6	0.0508 (19)	0.072 (3)	0.074 (3)	-0.0019 (18)	0.042 (2)	-0.001 (2)
Cl1	0.0779 (7)	0.0700 (7)	0.0894 (8)	0.0142 (5)	0.0499 (7)	-0.0143 (6)
Cl2	0.1635 (14)	0.0733 (8)	0.0817 (9)	0.0174 (8)	0.0784 (10)	0.0311 (6)
C13	0.0748 (7)	0.0673 (8)	0.0937 (9)	-0.0196 (5)	0.0236 (7)	-0.0294 (6)
O1	0.0498 (14)	0.0401 (14)	0.111 (2)	-0.0005 (11)	0.0413 (15)	0.0006 (14)
O2	0.0564 (15)	0.0762 (19)	0.0787 (19)	0.0110 (13)	0.0442 (15)	0.0000 (14)
C7	0.0409 (16)	0.0400 (17)	0.0342 (15)	0.0016 (13)	0.0187 (13)	0.0004 (12)
C8	0.0579 (19)	0.0354 (17)	0.0418 (17)	-0.0009 (14)	0.0236 (16)	0.0005 (13)
C11 C12 C13 O1 O2 C7 C8	0.0779 (7) 0.1635 (14) 0.0748 (7) 0.0498 (14) 0.0564 (15) 0.0409 (16) 0.0579 (19)	0.0700 (7) 0.0733 (8) 0.0673 (8) 0.0401 (14) 0.0762 (19) 0.0400 (17) 0.0354 (17)	0.0894 (8) 0.0817 (9) 0.0937 (9) 0.111 (2) 0.0787 (19) 0.0342 (15) 0.0418 (17)	0.0142 (5) 0.0174 (8) -0.0196 (5) -0.0005 (11) 0.0110 (13) 0.0016 (13) -0.0009 (14)	0.0499 (7) 0.0784 (10) 0.0236 (7) 0.0413 (15) 0.0442 (15) 0.0187 (13) 0.0236 (16)	-0.0143 (6) 0.0311 (6) -0.0294 (6) 0.0006 (14) 0.0000 (14) 0.0004 (12) 0.0005 (13)

Geometric parameters (Å, °)

Cl1—C8	1.776 (6)	C5—C6	1.523 (6)
Cl2—C8	1.762 (4)	C1—H1	0.97 (4)
Cl3—C8	1.758 (4)	C2—H2B	0.9700
O1—C7	1.218 (5)	C2—H2A	0.9700
O2—C7	1.217 (5)	С3—НЗА	0.9700
N1-C1	1.492 (5)	С3—НЗВ	0.9700
N1—H1A	0.85 (6)	C4—H4A	0.9700
N1—H1C	1.02 (4)	C4—H4B	0.9700
N1—H1B	0.82 (5)	C5—H5B	0.9700
C1—C6	1.523 (7)	C5—H5A	0.9700
C1—C2	1.513 (7)	С6—Н6В	0.9700
C2—C3	1.508 (6)	C6—H6A	0.9700
C3—C4	1.504 (8)	C7—C8	1.554 (5)
C4—C5	1.510 (9)		
C1—N1—H1C	109 (2)	НЗА—СЗ—НЗВ	108.00
C1—N1—H1A	111 (3)	C3—C4—H4A	109.00
C1—N1—H1B	113 (3)	C3—C4—H4B	109.00
H1B—N1—H1C	110 (4)	C5—C4—H4A	109.00
H1A—N1—H1B	112 (5)	C5—C4—H4B	109.00
H1A—N1—H1C	102 (4)	H4A—C4—H4B	108.00
N1-C1-C2	109.8 (3)	C4—C5—H5A	110.00
N1-C1-C6	109.7 (4)	C4—C5—H5B	109.00
C2—C1—C6	110.7 (3)	C6—C5—H5A	110.00
C1—C2—C3	110.6 (4)	C6—C5—H5B	109.00
C2—C3—C4	111.4 (4)	H5A—C5—H5B	108.00
C3—C4—C5	111.6 (4)	С1—С6—Н6А	109.00
C4—C5—C6	110.7 (4)	С1—С6—Н6В	110.00
C1—C6—C5	110.5 (4)	С5—С6—Н6А	109.00
N1—C1—H1	105 (2)	С5—С6—Н6В	110.00
C2-C1-H1	114 (3)	H6A—C6—H6B	108.00
C6—C1—H1	108 (3)	O1—C7—O2	127.7 (3)
C1—C2—H2A	110.00	O1—C7—C8	116.8 (4)
C1—C2—H2B	110.00	O2—C7—C8	115.5 (3)

C3—C2—H2A	110.00	Cl1—C8—Cl2	107.1 (2)
С3—С2—Н2В	110.00	Cl1—C8—Cl3	107.2 (2)
H2A—C2—H2B	108.00	Cl1—C8—C7	112.7 (3)
С2—С3—НЗА	109.00	Cl2—C8—Cl3	111.3 (2)
С2—С3—Н3В	109.00	Cl2—C8—C7	107.5 (2)
С4—С3—Н3А	109.00	Cl3—C8—C7	111.1 (3)
С4—С3—Н3В	109.00		
N1—C1—C2—C3	-178.3 (3)	C4—C5—C6—C1	-55.8 (5)
C6—C1—C2—C3	-57.1 (4)	O1—C7—C8—Cl1	-15.1 (4)
N1-C1-C6-C5	178.2 (3)	O1—C7—C8—Cl2	102.6 (4)
C2—C1—C6—C5	56.9 (4)	O1—C7—C8—Cl3	-135.5 (3)
C1—C2—C3—C4	56.5 (5)	O2—C7—C8—Cl1	165.9 (2)
C2—C3—C4—C5	-55.9 (6)	O2—C7—C8—Cl2	-76.4 (3)
C3—C4—C5—C6	55.4 (6)	O2—C7—C8—C13	45.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A····O1 ⁱ	0.85 (6)	1.96 (6)	2.788 (6)	167 (4)
N1—H1B····O2 ⁱⁱ	0.82 (5)	1.96 (5)	2.770 (5)	168 (4)
N1—H1C···O1 ⁱⁱⁱ	1.02 (4)	1.83 (4)	2.837 (4)	169 (4)

Symmetry codes: (i) x-1, -y+1/2, z-1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+1, y-1/2, -z+1/2.

Fig. 1

